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Introduction

Amphiphilic molecules in aqueous solution often self-

assemble as bilayer membranes that can form closed objects

called vesicles. Using an elastic continuum model, the shapes

of homogenous vesicles have successfully explained the

shapes of real biomembranes, such as the biconcave shape of

erythrocytes.[1] However, it is well known that real

biomembranes are much more complex and multi-compo-

nent systems. As a result, phase separation of the components

can induce a complicated shape deformation.[2–6] Recently, it

has also been found experimentally that, in a two-component

system, the line tension of domain boundaries can cause a

budding of the phase separated domains.[7]

In order to theoretically study the coupling between the

phase separation and vesicle deformation, the deformation

dynamics of two-component vesicles have been studied by the

Monte-Carlo method[8,9] and a dramatic vesicle shape

deformation has been observed during the evolution of the

phase separation. However, the resulted vesicle shapes are

rough due to the intrinsic fluctuations of the Monte Carlo

algorithm. Phase-separation-induced vesicle shape transfor-

mation has also been studied by using the dissipative particle

dynamics (DPD) method.[10–12] In the DPD model the

amphiphilic molecules are modeled as a chain of beads to

represent the polar head and hydrophobic tails, and thus the

molecular mechanism of the phase-separation-induced shape

transformation, such as budding, could be elucidated. The

Summary: The evolution dynamics of phase separation,
coupled with shape deformation of vesicles is described by
using dissipative dynamic equations, specifically the time-
dependent Ginzburg-Landau (TDGL) equations. In order
to improve the numerical stability and thus to efficiently
deal with a large deformation of vesicles, a new algorithm,
namely the discrete space variation model (DSVM) has been
developed for the first time. The algorithm is based on the
variation of the discretized free-energy functional, which is
constructed in discrete membrane space, in contrast to the
commonly used continuous free-energy functional. For the
sake of numerical tractability, only the cylindrical vesicles
(2D), with two components, are taken into consideration to
illustrate the efficiency and validity of new algorithm. The
simulation results, based on the DSVM algorithm have been
compared with those from both linear analysis and strong
segregation theory using the continuous space free-energy
functional. It is found that the DSVM algorithm can correctly
describe the coupling between the lateral phase-separation on

the vesicle membrane and the vesicle shape deformation,
both for early and late stages.

A flower-like vesicle obtained by DSVM simulation.
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disadvantage of DPD is that the simulation system could not

be too large, due to the limitation of computational resources.

Another more effective simulation method for tackling this

problem is based on the continuous-field model, and time-

dependent Ginzburg-Landau (TDGL) dynamics.[13] By

using this model, very impressive results were obtained,

where the experimental observations on the shapes of the

vesicle as well as the dynamic characteristics were

reproduced. However, due to the adoption of the continuous

elastic model for the membrane, the numerical discretization

for a large local deformation, such as the phase-separated

domains with very large local curvature, may cause serious

numerical instability. More seriously, the phase domain

boundaries on a deformable curved surface might

be discontinuous, that is some singularities in the curvature

could exist at the domain boundaries. Obviously, in this case,

the continuous elastic model of the membrane will fail and

thus it can only be applied in the case of small deformation

and in the early stage of the phase separation.

In order to overcome this difficulty, we designed a new

algorithm to simulate the phase-separation-induced

vesicle deformation. As a first step, we considered a 2D

membrane. A cross-section of a tubular vesicle can be viewed

as a 2D simplification. Although, the results for the 2D model

cannot exhibit the many interesting shapes of 3D vesicles,[7] a

2D confirmation of this algorithm is meaningful and 2D

calculation provides mathematical clearance and transparen-

cies. In the new algorithm, we first modeled the membrane (in

the 2D case the membrane is simplified as a line) as an

assembling of short bonds; their bending rigidity is assigned to

the bond angles, y. Afterwards, the Helfrich free-energy

functional[13,14] is directly constructed on this spatially dis-

cretized membrane, referred to as the discrete space variation

model (DSVM).[15] Obviously, the important difference from

the continuous elastic free-energy model is that the dis-

cretization in our model is physical rather than numerical, and

hence our model bears a large local curvature and numerical

stability is improved. Finally, variation of this discretized free-

energy functional, with respect to the discretized variables,

was performed to obtain discrete kinetic equations directly.

This model is free from the limitation of small spatial

difference steps and numerical stability is ensured.

In this paper, the general description of the 2D DSVM is

addressed in the section of Model and Algorithm. In the

section ofResults andDiscussion, the early-stage behavior of

the phase-separation-induced vesicle shape deformation is

analyzed by using linearized stability analysis. Furthermore,

the simulation results are presented and compared with the

results obtained from strong segregation theory.[16] Some

interesting results obtained by DSVM are presented to show

how efficient and numerically stable this approach is.

Model and Algorithm

Similar to the model for the two-component vesicle by

Taniguchi,[13] it was assumed that the membrane is locally

incompressible and that the total amounts of amphiphiles A

and B on the vesicle membrane are conserved during the

evolution. In addition, the membrane’s local bending

modulus was determined by the local composition of the

concentrations of the amphiphiles: fA and fB where fB¼
1�fA. For simplicity, a linear relationship was assumed,

that is k ¼ kAfA þ kBfB ¼ k0 þ zf where f ¼ fA � fB,

k0 ¼ ðkA þ kBÞ=2 and z ¼ ðkA � kBÞ=2. Similarly, the

local spontaneous curvature is also composition depen-

dent and can be simply expressed as HspðfA;fBÞ ¼
hAfA þ hBfB ¼ h0 þ ef with the average spontaneous

curvature given by h0 ¼ ðhA þ hBÞ=2 and the difference

of the spontaneous curvatures between the two components

given by 2e ¼ hA � hB.

In our model, the membrane contour line is decomposed

into N discrete, successively connected beads with position

vectors rk and bond vectors sk¼ rk� rk�1 (k¼ 1, 2, 3, . . . ,

N), as schematically shown in Figure 1. To ensure the

closure of the vesicle, we have the boundary condition of

rNþ1¼ r0. The composition of amphiphiles f is assigned to

the beads rather than the bonds connecting them.

With the model from Figure 1, the free-energy functional

based upon discrete space can be written as:

F ¼
XN
k¼1

k0

4
ðHk � efk � h0Þ2ðjskj þ jskþ1jÞ

þ P

2

XN
k¼1

rknkjskj þ
XN
k¼1

b

2
ðfk � fk�1Þ

2jskj

þ
XN
k¼1

f ðfkÞ
jskj þ jskþ1j

2
ð1Þ

Figure 1. A discretized 2D vesicle composed of N beads with
closed contour (rNþ1¼ r0). The bond vector is sk¼ rk� rk� 1 and
jskj is the distance between the kth and (k� 1)th beads. nk is the
normal vector which is perpendicular to the bond vector sk.Hkþ1 is
the local curvature of the (kþ 1)th beads which is defined as inverse
to the radius: Hkþ1 ¼ 2 sin ykþ1

jrkþ2�rk j.
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Here, the first term on the right hand side is the bending

elastic energy, with the mean curvature being Hk/2 (see

Figure 1) and P¼ pout� pin, representing the pressure

difference across the vesicle. For simplicity, we have set z ¼
ðkA � kBÞ=2 ¼ 0, meaning that there is no bending

modulus difference between the two components. The last

two terms are related to the Ginzburg-Landau-DeGennes

free energy.[17] The third term is the interface energy with

the correlation length b1/2. In the last term, f ðfkÞ ¼
�a2f

2
k=2 þ a4f

4
k=4, where a2 and a4 are phenomenological

parameters and a2 is related to the temperature, representing

the quench depth. We note that if we set z¼ 0 and the

coupling constant L¼�ej0, we have f ðfkÞ ! f ðfkÞþ
h0Lfk�L2f2

k=ð2k0Þ, and hence Equation (1) is reduced to

the free-energy functional used by Taniguchi.[13] Therefore,

it is clear that the phase-separation temperature has

been lowered, i.e., ~a2 ¼ a2 þ L2

k0
, due to the coupling

between the phase separation and vesicle deformation.

Furthermore, the average spontaneous curvature h0 only

contributes a constant to the free energy[16] and thus omitted in

the following.

Note that in Equation (1) there are two kinds of length

elements: jskj ¼ jrk � rk�1j and ðjskj þ jskþ1jÞ=2, in rela-

tion to two beads and three beads, respectively. For

example, for different values of b
2
ðfk � fk�1Þ

2
, between

beads k and k� 1, the distance between the two beads

should be the length element jskj ¼ jrk � rk�1j. While, for

the mixing free energy of the kth bead, f(fk), the length

element takes the average of the distances, jrk � rk�1j and

jrkþ1 � rkj related to three beads k� 1, k and kþ 1,

i.e., ðjrk � rk�1j þ jrkþ1 � rkjÞ=2 ¼ ðjskj þ jskþ1jÞ=2 is

employed to reasonably represent the average length

element needed for f(fk) at the bead k. Furthermore the

definition of the mean curvature is not the commonly used

form, Hk ¼ 2yk=jrkþ1 � rk�1j, which is invalid for a large

deformation. In discrete space, the mean curvature at bead k

is given by the inverse of the radius of the circumcircle of

the adjacent triangle:Hk ¼ 2 sin yk=jrkþ1 � rk�1j, as shown

in Figure 1. Therefore, the free-energy functional of

Equation (1) can be applied in the case of large deformation

of the vesicle.

Following Taniguchi’s idea,[13] the phase-separation-

induced vesicle deformation can be solved using the

simplest dissipative model, the time-dependent Ginzburg-

Landau (TDGL) equations in the form of discrete space.

@rk
@t

¼ �Lr

d F þ
PN
k¼1

gkjskj
� �

drk

¼ �LrfAknk þ Bkjskjskg
jskj þ jskþ1j

2

� ��1

ð2Þ

@fk

@t
¼ Lfr2 dF

dfk

jtkj þ jtkþ1j
2

� ��1
" #

ð3Þ

where Lr and Lf are two kinetic coefficients, gk is a local

Lagrange multiplier which is introduced to guarantee the

local incompressibility of the membrane, and the Laplace

operator r2
DXk ¼ Xkþ1s

�2
kþ1 þ Xk�1s

�2
k � ðs�2

k þ s�2
kþ1ÞXk.

Ak and Bk are normal and tangential forces, respectively,

and are expressed as

Ak ¼
X

i¼�1;0;1

½Diðk � iÞGk�i� þ
P

2
ðcos ykjtkþ1j þ jskjÞ

� gkþ1 sin yk

Bk ¼
X

i¼�1;0;1

½Eiðk � iÞGk�i� �
P

2
sin ykjskþ1jjskj

� gkþ1 cos ykjskj ð4Þ

where

gk ¼ gk � bðfk � fk�1Þjskj
�1=2 þ ½f ðfk�1Þ

þ f ðfkÞ�=2 þ k0½ðHk � efkÞ
2

þ ðHk�1 � efk�1Þ
2�=2 ð5Þ

and gðkÞ satisfies the relation

agðk þ 1Þ þ bgðkÞ þ cgðk � 1Þ ¼ d ð6Þ

The expressions for a, b, c and d in the above equation,

and Di(k), Ei(k) and Gk in Equation (4) are given in the

Appendix. Equation (6) is a tri-diagonal system, which can

be easily solved.

Also we have:

dF
dfk

¼ k0eðefk � HkÞ þ
@f ðfkÞ
@fk

þ 2b½fkðjskj
�1

þ jskþ1j�1Þ � fk�1jskj
�1

� fkþ1jskþ1j�1�ðjskj þ jskþ1jÞ�1 ð7Þ

The algorithm described above is referred to as the

discrete space variation model (DSVM), as this model is

based on the direct variation with respect to the free-energy

functional, built on a spatially discrete membrane, to derive

the discrete phase separation kinetics and deformation

equations. When N!1 and jskj! 0, the kinetic equa-

tions, Equation (2) and (3), obtained by DSVM reduced to

those obtained by the continuous-field model derived by

Taniguchi.[13] We should mention that the dissipative

dynamic equations given in Equation (2) and (3) are not

only the algorithm for searching for the minimum of the

free-energy functional of Equation (1), but also describe the

dynamics of the lateral phase separation on the membrane,

coupled with the deformation of the vesicle shapes.

Results and Discussion

Comparison with Linear Analysis at the Initial Stage

In order to test the validity and accuracy of the simulation

based on DSVM, we would first like to compare the
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simulation results with the linearized analysis of Equation

(2) and (3), in the form of the continuous free-energy

functional. In the following, we limit our treatment to the

very beginning of the deformation coupled with phase

separation. Following the linear analysis procedure of ref.[4]

at the early stage of deformation the vesicle is assumed to be

a circle with small and randomly distributed A and B

components:

rðyÞ ¼ r0 þ RðyÞðyÞ � r0

fðyÞ ¼ f0 þ DfðyÞDfðyÞ � 1 ð8Þ

R(y) and f(y) are then expanded into Fourier series:

RðyÞ ¼ c0 þ
X1
n¼1

½cn cos nyþ sn sin ny� ð9Þ

fðsðyÞÞ ¼ f0 þ
X1
n¼1

fcn cos
2pn
L

sðyÞ þ fsn sin
2pn
L

sðyÞ
� �

0 � s � L ð10Þ

where r0 denotes the radius of the initial circle, and

f0 ¼
Ð
fds

L
is the average order parameter. By properly

scaling the quantities as follows:

~p � Pr3
0

k0

�cn �
cn

r0

~fcn �
Lr0

k0

fcn

�a2 � k0ða2 þ k0e2 þ zeh0=2Þ
L2

~b � k0b

L2r2
0

ð11Þ

and only taking the cosine terms into consideration (the

coefficients of the sine terms take the same form of the

equations), the linearized equations are given by:

d~cn
dt

¼ aðnÞ~cn þ bðnÞ efcn

d efcn

dt
¼ cðnÞ~cn þ dðnÞ efcn ð12Þ

where aðnÞ ¼ �Lrpkðn2 � 1Þðn2 � 1 � ~pÞ=r3
0, bðnÞ ¼

�Lrpkðn2 � 1Þ=r3
0, cðnÞ ¼ �LfpL

2ðn2 � 1Þ=r0=k and

dðnÞ ¼ �LfpL
2ð~bn2 � ~a2Þ=r0=k.

Equation (12) also describes the dynamics at the very

early stage of phase separation and the shape deformation

and can be easily solved

~cn ¼ A1ðnÞer1ðnÞt þ A2ðnÞer2ðnÞtefcn ¼ B1ðnÞer1ðnÞt þ B2ðnÞer2ðnÞt ð13Þ
with A1ðnÞ ¼ C1=ðl1 � l2Þ, A2ðnÞ ¼ �C2=ðl1 � l2Þ,
B1ðnÞ ¼ C1l2=ðl1 � l2Þ, and B2ðnÞ ¼ C2ðl1 � l2Þ=l1.

Where C1 and C2 are two integration constants. l1 and l2

are given

l1;2 ¼
aðnÞ � dðnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðnÞ � dðnÞÞ2 þ 4bðnÞcðnÞ

q
2bðnÞ

ðþfor l1; � for l2Þ ð14Þ

The amplification factors r1,2 are calculated by:

r1;2 ¼ l1;2bðnÞ þ dðnÞbðnÞ ð15Þ

Obviously r1 and r2 (r1,2) are both real and r1> r2; thus in

the very beginning r1 will dominate the main growing

mode. Solving the equation dr1ðnÞ=dn ¼ 0, we obtain the

fastest growing mode Nm, as well as the number of buds

appearing in the vesicle contour.

Although it is not easy to directly calculate the

amplification factors from Equation (2) and (3), the fastest

growing mode at the very beginning of deformation can

easily be obtained as described above, using linear analysis.

Figure 2(a) shows the amplification factor (Equation (15)),

which represents the rate of phase separation and shape

deformation for the fastest growing mode versus the

reduced quench depth denoted by a2. Figure 2(b) shows

the fastest growing mode versus the reduced quench depth

Figure 2. Comparison of results simulated using DSVM with
results from linear analysis at the beginning of the evolution. (a)
The plot of the amplification factors r1(Nm) versus a2 by linear
analysis (Equation (15)) where Nm is the fastest growing mode of
r1(n); (b) The comparison between the fastest growing modes at
the initial stage of the DSVM simulation (the symbols) and the
results of the linear analysis (the solid lines). hfAi¼ hfBi,
Lr¼ 1.0, Lf ¼ 1:0, L ¼ 2pr0 ¼ 100, k0¼ 1.0, z¼ 0. The inset
shows the phase separation at small a2.
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and is compared with results obtained from the linear

analysis based on free-energy functional built in continuous

space by Taniguchi et al.[4] It is seen from Figure 2(b) that,

in general, the fastest growing mode Nm is increasing with

an increase in the reduced quench depth. Accordingly, the

rate of phase separation and shape deformation increase

with an increase in the reduced quench depth, as shown in

Figure 2(a). The pressure difference between the outer and

inner sides of a vesicle, however, can seriously influence the

behavior of the phase separation. When we increase the

outer pressure to be ~p ¼ 5 � 104=ð8p3Þ, relative to the case

of ~p ¼ 0, the rate of phase separation will be accelerated,

shown in Figure 2(a), and the domain size becomes small at

lower a2, shown in the inset of Figure 2(a). However, in

Figure 2(b), when a2 reaches 0.35, the phase domain size

becomes slightly larger with an increase in the outer

pressure, while the domain size decreases again following

the general tendency when a2> 0.35. In contrast, when the

inner pressure is higher, for example, ~p ¼ �1:0�
105=ð8p3Þ, the rate of phase separation will be accelerated

when a2> 0.28 but will decrease when a2< 0.28. However,

the phase domain size increases with increasing a2. From

Figure 2(b) we conclude that our DSVM simulation results

agree quite well with the linearized analysis based on the

continuous free-energy functional and confirm the validity

and accuracy of our DSVM algorithm.

It is seen from Figure 2(a) that the amplification factors

for the fastest growing mode decrease when we increase

Figure 3. The comparison between resulting vesicle shapes, obtained by DSVM, and
those from the strong segregation limit method for critical quench hfAi¼ hfBi. n
denotes the modes of separation, P is the pressure and e/L¼ 10 where L is the total
length of the contour line. The solid and dotted lines represent the A and B components,
respectively.
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e ¼ hA�hB
2

. The effect of the pressure difference across the

vesicle membrane is a bit complex. For the case of ~p > 0,

the amplification factor for the fastest mode always has a

positive value and is higher than that for ~p ¼ 0. However,

for the case of ~p > 0, the amplification factor for the fastest

mode becomes negative when a2< 0.12, shown in the inset

of Figure 2(a). Therefore, Figure 2(a) clearly demonstrates

the coupling between phase separation and shape deforma-

tion of the vesicle: the critical temperature of phase

separation can be raised or lowered depending on the

parameters ~p and e controlling the vesicle shapes.

Comparison with Strong Segregation
Theory at the Late Stage

The late stage solution of Equation (2) and (3) corresponds

to finding the minimum in the free-energy functional of

Equation (1). In order to ensure that the TDGL equations

based on our model (DSVM) reaches the minimum for

different folds of symmetry n, it is necessary to compare our

DSVM simulation results to those obtained by strong

segregation theory using the free-energy functional in

continuous space proposed by Kawakatsu and cow-

orkers.[16] In the strong segregation theory, an A/B mixture

separates into A domains with composition fA¼ 1 and B

domains with fB¼ 1, bounded by sharp domain walls.

Once the number of the domain is fixed, free-energy

equations for the vesicle only depend on the shape of the

vesicle and thus can be easily constructed. By minimizing

these free-energy equations, the shape equation is obtained

and numerically solved by an iterative method to reach the

equilibrium shape of the vesicle.[16]

Similar to the strong segregation theory in ref.[16] we

assume that at the beginning, two components are separated

into 2n equal segments dyed with the pure components A and

B alternatively, and that their distributions do not evolve any

more. Therefore, only the deformation is taken into

consideration and thus the validity of Equation (2) is

checked. Then, we only consider the deformation of the

vesicle to obtain the equilibrium shape with a DSVM

simulation and the results are compared with those obtained,

based on the strong segregation theory.[16] In Figure 3, it is

seen that, both qualitatively and quantitatively, the results

obtained by strong segregation theory and DSVM simulation

agree with each other very well. Therefore, we can give

DSVM the ‘‘license’’ to simulate the coupling between phase

separation and deformation of multi-component vesicles.

Efficiency and Validity for Large Deformations

In order to test how correct and efficient this model is in

dealing with large deformation of vesicles, some typical

results from DSVM calculations are presented in Figure 4.

In Figure 4(a) and (b), the initial state is a round circle with

A and B components randomly dyed along the contour

while in Figure 4(c) the initial state is two components

separated into two equal segments which will not evolve

further. Moreover, a long-range interaction is introduced

into the total discrete free-energy functional, Equation (1),

to avoid overlapping and crossing of the membrane.

During our simulation, it was found that the algorithm is

numerically very stable. For example, we can simulate the

dynamics of a vesicle composed of very small number of

discrete points; see Figure 4(a). In fact, the membrane can

Figure 4. Vesicle deformation after 10 000 time steps. r0e¼ 10
where r0 is the radius of the initial circle, P¼ 0, hfAi¼ hfBi,
a2¼ a4¼ 0.2 and jskj ¼ 1:0. The total length of the contour of the
vesicle was: (a) L¼ 100 with 100 discrete points; (b) L¼ 250; and
(c) L¼ 400. The solid and dotted lines represent the A and B
components, respectively.
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be composed of fewer than 40 discrete segments. With this

good numerical stability, DSVM is found to be valid

for simulating large deformation of vesicles, shown in

Figure 4(c). In addition to the numerical stability, the

efficiency of the simulation is, at least, ten times higher than

for the continuous free-energy functional model of the

membrane. Furthermore, the results are very impressive and

interesting, even though it is still a 2D model. The flower-

like vesicle in Figure 4(b), whose evolution pictures at

different time steps are shown in Figure 5 according to

Equation (2) and (3), is very similar to the cross-section of

one experimental result found in ref.[7] The vesicle shape of

Figure 4(a) is a little like the shape of the inner membrane

of mitochondria[18] and also Figure 4(c) is very interesting

with a spiral shape that can be found very often in the

biological systems.

Conclusion

Our DSVM model based on the variation of the discrete

free-energy functional, directly built on the discrete

membrane space has been developed to study the deforma-

tion of 2D vesicles coupled with phase separation. The

results from linear analysis by Taniguchi[4] and strong

segregation theory by Kawakatsu[16] have been used to

check the accuracy and validity of the DSVM algorithm. It

has been demonstrated that DSVM can correctly simulate

the early stage, as well as the late stage behaviors of the

shape deformation and phase separation of multi-compo-

nent vesicles. In addition, DSVM is not only suitable in the

case of large vesicle deformation, but also has high

simulation efficiency. More importantly, it has also been

demonstrated that DSVM is numerically very stable and the

resulting shapes of vesicles are much more smooth than

those by Monte-Carlo simulation. Finally, we should

mention that, extending to the case of 3D vesicle is

straight-forward, but a lengthy derivation and thus will be

presented in the future publications.

Appendix

In Equation (4), the expressions of Gk, Di and Ei,

respectively, are as follows:

Gk ¼
@½k0ðHk � efkÞ

2=2�
@Hk

¼ k0½Hk � efk� ðA1Þ

D1ðkÞ ¼
cos ykjskþ1j�1

jrkþ1 � rk�1j
� Hkðrkþ1 � rk�1Þnkþ1

jrkþ1 � rk�1j2

D0ðkÞ ¼
sin2 yk � 1 � cos ykjskþ1jjskj�1

jskþ1jjrkþ1 � rk�1j

D�1ðkÞ ¼
sinyk�1 sin yk þ nkþ1nk�1

jskjjrkþ1 � rk�1j

þ Hkðrkþ1 � rk�1Þnk�1

jrkþ1 � rk�1j2
ðA2Þ

Figure 5. Dynamic evolution patterns of the vesicle shape,
coupled with phase separation at different time steps (a) t¼ 102;
(b) t¼ 5� 102; (c) t¼ 2.5� 103; (d) t¼ 5� 103; and (e) t¼ 104

(the same as in Figure 4(b), not shown here). The parameter
settings are the same as in Figure 4(b).
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E1ðkÞ ¼ �Hkðrkþ1 � rk�1Þskþ1

jrkþ1 � rk�1j

E0ðkÞ ¼
sin yk cos ykjskj

jskþ1jjrkþ1 � rk�1j

E�1ðkÞ ¼
½sin yk cos yk�1 � skþ1nk�1jskþ1j�jsk�1j

jskjjrkþ1 � rk�1j

þ Hkðrkþ1 � rk�1Þsk�1

jrkþ1 � rk�1j2
ðA3Þ

The expression of coefficients in Equation (5) is given by

a ¼ � cos ykðjskj þ jskþ1jÞ�1

b ¼ ðjskj þ jskþ1jÞ�1 þ ðjsk�1j þ jskjÞ�1

c ¼ � cos yk�1ðjsk�1j þ jskjÞ
d ¼ sin yk�1½Ak�1 þ gk sin yk�1�ðjsk�1j þ jskjÞ�1

� ½jskjBk þ ckþ1 cos hk�ðjskj þ jskþ1jÞ�1

þ cos yk�1½jsk�1jBk�1 þ gk cos yk�1�ðjsk�1j
þ jskjÞ�1 ðA4Þ
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